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10.1 PROPERTIES OF NUCLEOPHILES
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Table 10.1
Relative Rates of Reaction of 
Nucleophiles with Iodomethane
Nucleophile Relative Rate
CH3OH 1
NO3

− 30
F− 5 x 102

SO4
−2 3 x 103

CH3CO2
− 2 x 104

Cl− 2.5 x 104

NH3 3.2 x 105

N3
− 6 x 105

Br− 6 x 105

CH3O− 2 x 106

I− 2.5 x 107

CH3S− 1 x 109
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Figure 10.1 Solvation of Ions by Proteolytic Solvent
!e nucleophilicity of anions in a protic solvent such as an alcohol is diminished because of hydrogen bonding between the anion and the solvent.
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Effects of Charge on Nucleophilicity
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Figure 10.2 Polarizability and Nucleophilicity
(a) !e nonbonded electrons of iodide are highly polarizable. One of the nonbonding electron pairs can overlap e"ectively with the back lobe 
of the sp3-hybridized carbon atom in a nucleophilic substitution reaction. !erefore, iodide is an excellent nucleophile, even though it is not 
very basic.
(b) !e valence electrons of #uoride, in contrast, are not very polarizable, and do not e"ectively overlap the back lobe of the sp3-hybridized carbon 
atom in a nucleophilic substitution reaction. !erefore, #uoride is a poor nucleophile, even though it is much more basic than iodide.
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Figure 10.3 Steric Effects in SN2 Reactions
(a) Primary alkyl halides react with nucleophiles by an SN2 mechanism that proceeds through a trigonal bipyramidal transition state.
(b) Tertiary alkyl halides do not react by an SN2  mechanism because the substrate blocks the approach of the nucleophile. !e trigonal bipy-
ramidal transition state cannot form because it is too sterically crowded.
(c) !e linear arrangement of the nucleophile and the leaving group in the transition state for an SN2 reaction requires a primary or secondary 
center on carbon because a tertiary center blocks the approach of the nucleophile.

(c) Molecular orbitals in the transition state of an SN2 reaction.
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Figure 10.4 Stereochemical Effects in SN1 Reactions
A chiral starting material, (S)-3-methyl-3-bromohexane, reacts with water to give a tertiary carbocation. !is intermediate is planar, and can be 
attacked by water either from the top or bottom side to give a racemic mixture of products. !e reaction proceeds by an SN1 mechanism.
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Figure 10.5 Steric Effects of β-Substituents in SN2 Reactions
β-Substituents decrease the rates of SN2 reactions by interfering with the approach of the nucleophile. Both 1-bromopropane, and 1-bromo-
2-methylpropane have conformations in which the methyl groups do not completely hinder the approach of the nucleophile. However, in 
1-bromo-2,2-dimethylpropane,  no conformation exists that allows the nucleophile to reach the β carbon, so the rate is very slow. 
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Table 10.2
Relative Rates of SN2 Reactions of Branched 
Bromoalkanes
Bromoalkane Relative 

Rate (I−)
Relative Rate
(CH3CH2O

−)
CH3—CH2—Br 1    1
CH3—CH2—CH2—Br 0.8   0.3

CH2 BrCH

CH3

CH3

3.0 x 10−³   3.0 x 10−²

CH2 BrCCH3

CH3

CH3

1 x 10-5 4 x 10-6



Figure 10.6 Resonance Structures of Allylic and Benzylic Carbocations
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Figure 10.7 Solvation of Cations by Polar Aprotic Solvents
Cations are solvated by polar aprotic solvents. !e partner anion (counterion) remains unsolvated, and “naked.” As a result, its nucleophilicity 
increases.
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Table 10.3
Relative Rates of SN1 Reactions 
and Solvent Polarity 
Solvent Dielectric 

Constant 
Relative 
Rate

Acetic acid      6    1
Methanol    33   4
Formic Acid    58  5 x 103

Water    78  1.5 x 105

Table 10.4 
Relative Rates of SN2 Reactions and Solvent 
Polarity
CH3(CH2)2CH2Br + N3

– →CH3(CH2)2CH2N3 + Br–

Solvent Relative Rate
methanol 1
formamide 12
methylformamide 45
dimethylformamide 1.2 x 106



Figure 10.8 Stereoelectronic Effects in E2 Reactions
!e E2 reaction is most favorable when the hydrogen on the β-carbon and the halogen are in an anti periplanar conformation. !is is the case in 
cis-1-bromo-4-tert-butyl-cyclohexane. A Newman projection structure shows this favorable conformation.
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